研究等業績 - 原著論文 - 張 田力
-
Preparation of Biodegradable PLGA-Nanoparticles Used for pH-Sensitive Intracellular Delivery of an Anti-inflammatory Bacterial Toxin to Macrophages.
Ayaka Harada, Hiroyasu Tsutsuki, Tianli Zhang, Ruda Lee, Kinnosuke Yahiro, Tomohiro Sawa, Takuro Niidome
Chemical & pharmaceutical bulletin 68 ( 4 ) 363 - 368 2020年 [査読有り]
研究論文(学術雑誌)
Poly(D,L-lactide-co-glycolic) acid (PLGA) is a synthetic copolymer that has been used to design micro/nanoparticles as a carrier for macromolecules, such as protein and nucleic acids, that can be internalized by the endocytosis pathway. However, it is difficult to control the intracellular delivery to target organelles. Here we report an intracellular delivery system of nanoparticles modified with bacterial cytotoxins to the endoplasmic reticulum (ER) and anti-inflammatory activity of the nanoparticles. Subtilase cytotoxin (SubAB) is a bacterial toxin in certain enterohemorrhagic Escherichia coli (EHEC) strains that cleaves the host ER chaperone BiP and suppresses nuclear factor-kappaB (NF-κB) activation and nitric oxide (NO) generation in macrophages at sub-lethal concentration. PLGA-nanoparticles were modified with oligo histidine-tagged (6 × His-tagged) recombinant SubAB (SubAB-PLGA) through a pH-sensitive linkage, and their translocation to the ER in macrophage cell line J774.1 cells, effects on inducible NO synthase (iNOS), and levels of tumor necrosis factor (TNF)-α cytokine induced by lipopolysaccharide (LPS) were examined. Compared with free SubAB, SubAB-PLGA was significantly effective in BiP cleavage and the induction of the ER stress marker C/EBP homologous protein (CHOP) in J774.1 cells. Furthermore, SubAB-PLGA attenuated LPS-stimulated induction of iNOS and TNF-α. Our findings provide useful information for protein delivery to macrophages and may encourage therapeutic applications of nanoparticles to the treatment of inflammatory diseases.
-
Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock.
Tianli Zhang, Katsuhiko Ono, Hiroyasu Tsutsuki, Hideshi Ihara, Waliul Islam, Takaaki Akaike, Tomohiro Sawa
Cell chemical biology 26 ( 5 ) 686 - 698 2019年05月 [査読有り]
研究論文(学術雑誌)
Cysteine persulfide and cysteine polysulfides are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Accumulating evidence has suggested that cysteine persulfides/polysulfides are abundant in prokaryotes and eukaryotes and play important roles in diverse biological processes such as antioxidant host defense and redox-dependent signal transduction. Here, we show that enhancement of cellular polysulfides by using polysulfide donors developed in this study resulted in marked inhibition of lipopolysaccharide (LPS)-initiated macrophage activation. Polysulfide donor treatment strongly suppressed LPS-induced pro-inflammatory responses in macrophages by inhibiting Toll-like receptor 4 (TLR4) signaling. Other TLR signaling stimulants-including zymosan A-TLR2 and poly(I:C)-TLR3-were also significantly suppressed by polysulfur donor treatment. Administration of polysulfide donors protected mice from lethal endotoxin shock. These data indicate that cellular polysulfides negatively regulate TLR4-mediated pro-inflammatory signaling and hence constitute a potential target for inflammatory disorders.
-
Synthesis of Pegylated Manganese Protoporphyrin as a Catalase Mimic and Its Therapeutic Application to Acetaminophen-Induced Acute Liver Failure.
Tianli Zhang, Jun Fang, Hiroyasu Tsutsuki, Katsuhiko Ono, Waliul Islam, Tomohiro Sawa
Biological & pharmaceutical bulletin 42 ( 7 ) 1199 - 1206 2019年 [査読有り]
研究論文(学術雑誌)
Metalloporphyrin derivatives have been investigated for their therapeutic potential for oxidative stress-related diseases because of their scavenging of reactive oxygen species (ROS). Here, we describe the synthesis, physicochemical properties, and ROS-scavenging activities of one such derivative-polyethylene glycol (PEG)-conjugated manganese protoporphyrin (PEG-MnPP). Carboxyl groups of the protoporphyrin ring at the C6 and C7 positions were first conjugated with ethylenediamine to introduce amino groups into the protoporphyrin structure. The amino groups were then reacted with succinimidyl PEG, with an average molecular weight of 2000, to obtain pegylated protoporphyrin (PEG-PP). Manganese was chelated to the protoporphyrin ring by incubating PEG-PP and manganese acetate in methanol. Dynamic light scattering and fluorescent spectrometry analyses revealed that PEG-MnPP self-assembled into nanoparticles in aqueous media with an apparent diameter of 70 nm. PEG-MnPP effectively eliminated hydrogen peroxide from cell culture media and protected cultured mammalian cells from toxic insults induced by hydrogen peroxide exposure or by 6-hydroxydopamine treatment. Intravenous administration of PEG-MnPP to mice significantly suppressed acute liver failure that had been induced by acetaminophen overdose. These data warrant additional investigation to study the therapeutic potential of PEG-MnPP as a water-soluble metalloporphyrin-based catalase mimic for oxidative stress-associated diseases.
-
Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling.
Tomohiro Sawa, Katsuhiko Ono, Hiroyasu Tsutsuki, Tianli Zhang, Tomoaki Ida, Motohiro Nishida, Takaaki Akaike
Advances in microbial physiology 72 1 - 28 2018年 [査読有り]
研究論文(学術雑誌)
Cysteine hydropersulphide (CysSSH) is a cysteine derivative having one additional sulphur atom bound to a cysteinyl thiol group. Recent advances in the development of analytical methods for detection and quantification of persulphides and polysulphides have revealed the biological presence, in both prokaryotes and eukaryotes, of hydropersulphides in diverse forms such as CysSSH, homocysteine hydropersulphide, glutathione hydropersulphide, bacillithiol hydropersulphide, coenzyme A hydropersulphide, and protein hydropersulphides. Owing to the chemical reactivity of the persulphide moiety, biological systems utilize persulphides as important intermediates in the synthesis of various sulphur-containing biomolecules. Accumulating evidence has revealed another important feature of persulphides: their potent reducing activity, which implies that they are implicated in the regulation of redox signalling and antioxidant functions. In this chapter, we discuss the biological occurrence and possible biosynthetic mechanisms of CysSSH and related persulphides, and we include descriptions of recent advances in the analytical methods that have been used to detect and quantitate persulphide species. We also discuss the antioxidant activity of persulphide species that contributes to protecting cells from reactive oxygen species-associated damage, and we examine the signalling roles of CysSSH in bacteria.
-
Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.
Katsuhiko Ono, Minkyung Jung, Tianli Zhang, Hiroyasu Tsutsuki, Hiroshi Sezaki, Hideshi Ihara, Fan-Yan Wei, Kazuhito Tomizawa, Takaaki Akaike, Tomohiro Sawa
Free radical biology & medicine 106 69 - 79 2017年05月 [査読有り]
研究論文(学術雑誌)
Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34S-labeled L-cysteine from O-acetyl-L-serine and 34S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur (34S) and nitrogen (15N) atoms was also achieved by performing enzyme reactions with 15N-labeled L-serine, acetyl-CoA, and 34S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34S-labeled N-acetyl-L-cysteine (NAC) by incubating 34S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology.
-
Synthesis and Characterization of 8-Nitroguanosine 3',5'-Cyclic Monophosphorothioate Rp-Isomer as a Potent Inhibitor of Protein Kinase G1α.
Khandaker Ahtesham Ahmed, Tianli Zhang, Katsuhiko Ono, Hiroyasu Tsutsuki, Tomoaki Ida, Soichiro Akashi, Keishi Miyata, Yuichi Oike, Takaaki Akaike, Tomohiro Sawa
Biological & pharmaceutical bulletin 40 ( 3 ) 365 - 374 2017年03月 [査読有り]
研究論文(学術雑誌)
Guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinases (PKG) are kinases regulating diverse physiological functions including vascular smooth muscle relaxation, neuronal synaptic plasticity, and platelet activities. Certain PKG inhibitors, such as Rp-diastereomers of derivatives of guanosine 3',5'-cyclic monophosphorothioate (Rp-cGMPS), have been designed and used to study PKG-regulated cell signaling. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is an endogenous cGMP derivative formed as a result of excess production of reactive oxygen species and nitric oxide. 8-Nitro-cGMP causes persistent activation of PKG1α through covalent attachment of cGMP moieties to cysteine residues of the enzyme (i.e., the process called protein S-guanylation). In this study, we synthesized a nitrated analogue of Rp-cGMPS, 8-nitroguanosine 3',5'-cyclic monophosphorothioate Rp-isomer (Rp-8-nitro-cGMPS), and investigated its effects on PKG1α activity. We synthesized Rp-8-nitro-cGMPS by reacting Rp-8-bromoguanosine 3',5'-cyclic monophosphorothioate (Rp-8-bromo-cGMPS) with sodium nitrite. Rp-8-Nitro-cGMPS reacted with the thiol compounds cysteine and glutathione to form Rp-8-thioalkoxy-cGMPS adducts to a similar extent as did 8-nitro-cGMP. As an important finding, a protein S-guanylation-like modification was clearly observed, by using Western blotting, in the reaction between recombinant PKG1α and Rp-8-nitro-cGMPS. Rp-8-Nitro-cGMPS inhibited PKG1α activity with an inhibitory constant of 22 µM in a competitive manner. An organ bath assay with mouse aorta demonstrated that Rp-8-nitro-cGMPS inhibited vascular relaxation induced by acetylcholine or 8-bromo-cGMP more than Rp-8-bromo-cGMPS did. These findings suggest that Rp-8-nitro-cGMPS inhibits PKG through induction of an S-guanylation-like modification by attaching the Rp-cGMPS moiety to the enzyme. Additional study is warranted to explore the potential application of Rp-8-nitro-cGMPS to biochemical and therapeutic research involving PKG1α activation.
-
Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation.
Hiroyasu Tsutsuki, Minkyung Jung, Tianli Zhang, Katsuhiko Ono, Tomoaki Ida, Kohei Kunieda, Hideshi Ihara, Takaaki Akaike, Tomohiro Sawa
Biochemical and biophysical research communications 478 ( 1 ) 7 - 11 2016年09月 [査読有り]
研究論文(学術雑誌)
8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated cGMP derivative formed in response to nitric oxide (NO) and reactive oxygen species (ROS). It can cause a post-translational modification (PTM) of protein thiols through cGMP adduction (protein S-guanylation). Accumulating evidence has suggested that, in mammals, S-guanylation of redox-sensor proteins may implicate in regulation of adaptive responses against ROS-associated oxidative stress. Occurrence as well as protein targets of S-guanylation in bacteria remained unknown, however. Here we demonstrated, for the first time, the endogenous occurrence of protein S-guanylation in Escherichia coli (E. coli). Western blotting using anti-S-guanylation antibody clearly showed that multiple proteins were S-guanylated in E. coli. Interestingly, some of those proteins were more intensely S-guanylated when bacteria were cultured under static culture condition than shaking culture condition. It has been known that E. coli is deficient of guanylate cyclase, an enzyme indispensable for 8-nitro-cGMP formation in mammals. We found that adenylate cyclase from E. coli potentially catalyzed 8-nitro-cGMP formation from its precursor 8-nitroguanosine 5'-triphosphate. More importantly, E. coli lacking adenylate cyclase showed significantly reduced formation of S-guanylated proteins. Our S-guanylation proteomics successfully identified S-guanylation protein targets in E. coli, including chaperons, ribosomal proteins, and enzymes which associate with protein synthesis, redox regulation and metabolism. Understanding of functional impacts for protein S-guanylation in bacterial signal transduction is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of pathogenic bacterial infections.
-
JNK regulatory molecule G5PR induces IgG autoantibody-producing plasmablasts from peritoneal B1a cells.
Masahiro Kitabatake, Miho Soma, Tianli Zhang, Kazuhiko Kuwahara, Yoshimi Fukushima, Takuya Nojima, Daisuke Kitamura, Nobuo Sakaguchi
Journal of immunology (Baltimore, Md. : 1950) 194 ( 4 ) 1480 - 8 2015年02月 [査読有り]
研究論文(学術雑誌)
Peritoneal B1a cells expressing CD5 and CD11b generate autoantibody-producing precursors in autoimmune-prone mice. Previous studies show reduced JNK signaling in peritoneal B1a cells of female New Zealand Black mice and an abnormal increase of protein phosphatase 2A subunit G5PR that regulates BCR-mediated JNK signaling as a cause of autoimmunity. To investigate the mechanism regulating B1a differentiation into autoantibody-secreting plasmablasts (PBs), we applied an in vitro culture system that supports long-term growth of germinal center (GC) B cells (iGB) with IL-4, CD40L, and BAFF. Compared with spleen B2 cells, B1a cells differentiated into GC-like B cells, but more markedly into PBs, and underwent class switching toward IgG1. During iGB culture, B1a cells expressed GC-associated aicda, g5pr, and bcl6, and markedly PB-associated prdm1, irf4, and xbp1. B1a-derived iGB cells from New Zealand Black × New Zealand White F1 mice highly differentiated into autoantibody-secreting PBs in vitro and localized to the GC area in vivo. In iGB culture, JNK inhibitor SP600125 augmented the differentiation of C57BL/6 B1a cells into PBs. Furthermore, B1a cells from G5PR transgenic mice markedly differentiated into IgM and IgG autoantibody-secreting PBs. In conclusion, JNK regulation is critical to suppress autoantibody-secreting PBs from peritoneal B1a cells.