安達 毅 (アダチ ツヨシ)

ADACHI Tsuyoshi

写真a

所属

大学院国際資源学研究科  資源開発環境学専攻 

生年

1969年

研究室住所

010-8502 秋田県秋田市手形学園町1-1 秋田大学 国際資源学部 2階N213号室

研究室電話

018-889-2468

研究室FAX

018-889-2468

ホームページ

http://www.gipc.akita-u.ac.jp/~adachi/

メールアドレス

メールアドレス

研究キーワード 【 表示 / 非表示

  • 資源経済学

出身大学 【 表示 / 非表示

  •  
    -
    1992年03月

    京都大学   工学部   資源工学科   卒業

出身大学院 【 表示 / 非表示

  •  
    -
    1994年03月

    京都大学  工学研究科  資源工学専攻  修士課程  修了

留学履歴 【 表示 / 非表示

  • 2012年10月
    -
    2013年03月

    カーティン大学   研究員

取得学位 【 表示 / 非表示

  • 東京大学 -  博士(工学)

職務経歴(学内) 【 表示 / 非表示

  • 2016年04月
    -
    継続中

    秋田大学   大学院国際資源学研究科   資源開発環境学専攻   教授  

  • 2014年04月
    -
    2016年03月

    秋田大学   国際資源学部   国際資源学科   資源政策コース   教授  

  • 2010年09月
    -
    2015年03月

    秋田大学   国際資源学教育研究センター   教授  

職務経歴(学外) 【 表示 / 非表示

  • 2016年04月
    -
    継続中

      秋田大学   大学院国際資源学研究科 資源開発環境学専攻   教授

  • 2014年04月
    -
    継続中

      秋田大学   国際資源学部 国際資源学科 資源政策コース   教授

  • 2006年06月
    -
    2010年08月

      東京大学   環境安全研究センター   准教授

  • 2006年03月
    -
    2010年08月

      東京大学   生産技術研究所   准教授

  • 1995年04月
    -
    2006年03月

      東京大学   大学院工学系研究科 地球システム工学専攻   助教

学会(学術団体)・委員会 【 表示 / 非表示

  • 2008年04月
    -
    継続中
     

    日本国

     

    日本リアルオプション学会

  • 1995年04月
    -
    継続中
     

    日本国

     

    エネルギー・資源学会

  • 1994年04月
    -
    継続中
     

    日本国

     

    資源・素材学会

研究分野 【 表示 / 非表示

  • エネルギー / 地球資源工学、エネルギー学

 

学位論文 【 表示 / 非表示

  • 鉱物資源開発の持続可能性評価に関する研究

    安達 毅

      2001年07月

    単著

研究等業績 【 表示 / 非表示

    ◆原著論文【 表示 / 非表示

  • Enhancing Interpretability in Drill Bit Wear Analysis through Explainable Artificial Intelligence: A Grad-CAM Approach

    Senjoba L.

    Applied Sciences (Switzerland) ( Applied Sciences (Switzerland) )  14 ( 9 ) 3621 - 3621   2024年05月

    研究論文(学術雑誌)  

    This study introduces a novel method for analyzing vibration data related to drill bit failure. Our approach combines explainable artificial intelligence (XAI) with convolutional neural networks (CNNs). Conventional signal analysis methods, such as fast Fourier transform (FFT) and wavelet transform (WT), require extensive knowledge of drilling equipment specifications, which limits their adaptability to different conditions. In contrast, our method leverages XAI algorithms applied to CNNs to directly identify fault signatures from vibration signals. The signals are transformed into their frequency components and then employed as inputs to a CNN model, which is trained to detect patterns indicative of drill bit failure. XAI algorithms are then employed to generate attention maps, highlighting regions of interest in the CNN. By scrutinizing these maps, engineers can identify critical frequencies associated with drill bit failure, providing valuable insights for maintenance and optimization. This method offers a transparent and interpretable framework for analyzing vibration data, enabling informed decision-making and proactive maintenance strategies to enhance drilling efficiency and minimize downtime. The integration of XAI with CNNs facilitates a deeper understanding of the root causes of drill bit failure and improves overall drilling performance.

    DOI

  • A Comprehensive Numerical Modeling Study for Parameter Optimization and Slope Stability Analysis in the Baganuur Lignite Coal Mine

    Enkhbold B.

    Mining ( Mining )  3 ( 4 ) 755 - 772   2023年12月

    研究論文(学術雑誌)  

    The “Baganuur” lignite coal mine is one of the biggest open cast mines in Mongolia. However, there is a huge challenge in managing the stability of its internal dump, which prevents the proper operation of the mine and has an impact on the economy. To solve the internal dump slope stability problem, this study focused on incorporating the inherent mechanical properties of the rock material to build numerical models of the internal dump. By applying two software programs from Rocscience (Phase2 and Slide) and four different methods, the finite element method, the Bishop method, the Janbu simplified method, and the Spencer simplified method, the current and improved internal dump parameters were numerically simulated and analyzed. Based on the properties of the rock, the LEM and FEM were used to determine the parameters that could have an impact on the stability of the internal waste dump. The impacts of the internal dump height, dip angle, and safety berm on these parameters were studied. This study covers several analytical methods for calculating safety factors. Based on the results of the numerical simulation, it is determined that it is possible to increase the internal dump capacity by approximately 56% at a 50 m height and 28° dip angle and using a 15 m safety berm. Under similar conditions, this study presents an optimum SRF at 40 m height, 28° dip angle, and 5 m safety berm. Based on the numerical models, it is found that changes in the dip angle have a greater impact than changes in the dump height on the slope stability of an internal dump.

    DOI

  • Digital Twin Technology in Data Center Simulations: Evaluating the Feasibility of a Former Mine Site

    Ikeda H.

    Sustainability (Switzerland) ( Sustainability (Switzerland) )  15 ( 23 ) 16176 - 16176   2023年12月

    研究論文(学術雑誌)  

    Mining activities often deem mine sites as temporary, leading to their eventual reclamation, rehabilitation, or abandonment. This study innovates by proposing the re-purposing of the disused Osarizawa mine in Akita, Japan, leveraging its consistently low tunnel temperatures to establish a data center, thereby offering a sustainable economic avenue to offset reclamation costs. We assessed the feasibility of this transformation by gathering comprehensive environmental data from the site and conducting meticulous ventilation simulations. These simulations explored various scenarios encompassing diverse ventilation configurations, data server room dimensions, thermal outputs, and the inherent cooling capabilities of the proposed humid rooms. By juxtaposing the simulation outcomes with the criteria set forth in the ASHRAE 2011 Thermal Guidelines, we pinpointed the optimal parameters that satisfy the stringent temperature and relative humidity prerequisites essential for a data center’s operation. This research underscores the potential of reimagining abandoned mine sites as strategic assets, providing economic benefits while adhering to critical data center infrastructure standards.

    DOI

  • Evaluation and Prediction of Blast-Induced Ground Vibrations: A Gaussian Process Regression (GPR) Approach

    Fissha Y.

    Mining ( Mining )  3 ( 4 ) 659 - 682   2023年12月

    研究論文(学術雑誌)  

    Ground vibration is one of the most hazardous outcomes of blasting. It has a negative impact both on the environment and the human population near to the blasting area. To evaluate the magnitude of blasting vibrations, it is important to consider PPV as a fundamental critical base parameter practice in terms of vibration velocity. This study aims to explore the application of different soft computing techniques, including a Gaussian process regression (GPR), decision tree (DT), and support vector regression (SVR), for the prediction of blast-induced ground vibration (PPV) in quarry mining. The three models were evaluated using classical mathematical evaluation metrics (R2, RMSE, MSE, MAE). The result shows that the GPR model achieves an excellent prediction result; with R2 = 0.94, RMSE = 0.0384, MSE = 0.0014, and MAE = 0.0265, it shows high accuracy in predicting PPV. The Shapley additive explanation (SHAP) results emphasize the importance of understanding the interactions between the various factors and their effects on the vibration assessment. The findings can inform the development of more sustainable and environmentally friendly models for predicting blasting vibrations. Using a GPR to simulate and predict blasting-induced ground vibrations is the study’s main contribution. The GPR can capture complicated, non-linear correlations in data, making it ideal for blast-induced ground vibrations, which are dynamic and nonlinear. By using a Gaussian process regression, we can help companies and researchers improve the safety and efficiency in blast-induced ground vibration environments.

    DOI

  • Soft ground tunnel lithology classification using clustering-guided light gradient boosting machine

    Kilic K.

    Journal of Rock Mechanics and Geotechnical Engineering ( Journal of Rock Mechanics and Geotechnical Engineering )  15 ( 11 ) 2857 - 2867   2023年11月

    研究論文(学術雑誌)  

    During tunnel boring machine (TBM) excavation, lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation. However, site investigation generally lacks ground samples and the information is subjective, heterogeneous, and imbalanced due to mixed ground conditions. In this study, an unsupervised (K-means) and synthetic minority oversampling technique (SMOTE)-guided light-gradient boosting machine (LightGBM) classifier is proposed to identify the soft ground tunnel classification and determine the imbalanced issue of tunnelling data. During the tunnel excavation, an earth pressure balance (EPB) TBM recorded 18 different operational parameters along with the three main tunnel lithologies. The proposed model is applied using Python low-code PyCaret library. Next, four decision tree-based classifiers were obtained in a short time period with automatic hyperparameter tuning to determine the best model for clustering-guided SMOTE application. In addition, the Shapley additive explanation (SHAP) was implemented to avoid the model black box problem. The proposed model was evaluated using different metrics such as accuracy, F1 score, precision, recall, and receiver operating characteristics (ROC) curve to obtain a reasonable outcome for the minority class. It shows that the proposed model can provide significant tunnel lithology identification based on the operational parameters of EPB-TBM. The proposed method can be applied to heterogeneous tunnel formations with several TBM operational parameters to describe the tunnel lithologies for efficient tunnelling.

    DOI

  • 全件表示 >>

    ◆国際会議プロシーディングス【 表示 / 非表示

  • Electricity generating resources portfolio optimization; Kenya’s case.

    Ojiambo N. Malala, Tsuyoshi Adachi

    14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 ( 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 )    2017年

    研究論文(国際会議プロシーディングス)  

  • Evaluation of rare earth element in Mongolia using real option analysis

    Sambuudorj Erdenebat, Tsuyoshi Adachi

    14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 ( 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 )    2017年

    研究論文(国際会議プロシーディングス)  

  • How macroeconomic factors influence volatility of metal prices?

    Wenhua Li, Tsuyoshi Adachi

    14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 ( 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 )    2017年

    研究論文(国際会議プロシーディングス)  

  • Investment of long-term supply of electricity through coal production in Botswana

    Larona Teseletso, Tsuyoshi Adachi

    14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 ( 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 )    2017年

    研究論文(国際会議プロシーディングス)  

  • What causes copper price changes: Stock markets or Speculation?

    Kegomoditswe Koitsiwe, Tsuyoshi Adachi

    14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 ( 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017 )    2017年

    研究論文(国際会議プロシーディングス)  

  • 全件表示 >>

    ◆⼤学,研究機関紀要【 表示 / 非表示

  • 専門教育のテーマを視野に入れた初年次教育の検討――資源政策コースにおける2014年度~2016年度の取り組みから

    田所聖志・宮本律子・三宅良美・中村裕・安達毅

    秋田大学教養基礎教育研究年報   Vol. 13 ( 24 )   pp.13-24   2018年01月  [査読有り]

    研究論文(大学,研究機関紀要)   国内共著

  • 専門教育のテーマを視野に入れた初年次教育の検討――資源政策コースにおける2014年度~2016年度の取り組みから

    田所聖志, 宮本律子, 三宅良美, 中村裕, 安達毅

    秋田大学教養基礎教育研究年報   Vol. 13 ( 24 )   pp.13-24   2018年01月  [査読有り]

    研究論文(大学,研究機関紀要)  

  • ◆その他【 表示 / 非表示

  • Deep learning-based rock type identification using drill vibration frequency spectrum images

    Senjoba L.

    International Journal of Mining, Reclamation and Environment ( International Journal of Mining, Reclamation and Environment )  39 ( 1 ) 40 - 55   2025年

    DOI

  • Advanced UAV photogrammetry for precision 3D modeling in GPS denied inaccessible tunnels

    Ikeda H.

    Safety in Extreme Environments ( Safety in Extreme Environments )  6 ( 4 ) 269 - 287   2024年12月

    DOI

  • 全件表示 >>

 

学内活動 【 表示 / 非表示

  • 2014年04月
    -
    2018年03月
      国際資源学部資源政策コース コース長   (所属部局内委員会)

  • 2013年04月
    -
    2015年03月
      国際資源学教育研究センター長   (センター・施設長)

 

おすすめURL 【 表示 / 非表示